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A micromechanics model of creep deformation 
in dispersion-strengthened metals 
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Department of Mechanical Engineering, Mining College, Akita University, 
1-1 Tegatagakuen-cho, Akita 010 Japan 

A micromechanics model, in which work-hardening caused by second-phase particles and 
a recovery process by diffusion of atoms were taken into account, has been proposed for 
explaining the creep deformation of dispersion-strengthened metals in high-temperature 
creep. A constitutive equation of the | projection was employed to describe the whole creep 
curves from the onset of loading to rupture. The results of the calculations based on the 
present model have been compared with those of experiments on the carbon steels 
containing spherical cementite particles. There was a correlation between the experimental 
creep curves and the calculated ones. The changes in the calculated creep strain and creep 
rate with time have also been compared with the experimental results on carbon steels. The 
micromechanics model was found to be applicable to any kind of two-phase material, if the 
constitutive equation was appropriately chosen. 

1. In troduct ion  
Creep curves of metallic materials are often charac- 
terized by three creep terms, namely, transient creep, 
steady-state creep and accelerated creep at high tem- 
peratures [-1], but the creep deformation of a specimen 
does not always exhibit steady-state creep, or acceler- 
ated creep occupies most of the creep period in some 
kinds of material under certain creep conditions [2]. 
In these materials, the present structural design con- 
cept, which is based on the creep deformation up to 
steady-state creep, cannot be applied to the design and 
safety assurance of high-temperature structures. The 
| projection concept recently proposed E2], is a con- 
venient method to reproduce the whole creep curves 
from the onset of loading to the rupture of specimens 
by a single equation. This method has been applied to 
the analysis of creep deformation in several kinds of 
metallic materials and ceramics [2, 3]. We [4] have 
analysed the creep deformation in the ductile two- 
phase alloys using a continuum mechanics model in 
which the internal stresses arising from the creep 
strain difference between the second phase and the 
matrix were taken into account. A similar creep model 
in which the | projection was incorporated as the 
constitutive equation, has also been applied [5] to the 
prediction of the creep deformation and rupture life, 
and a good correlation was found between the re- 
sults of the analysis and the experimental results on 
ferrite-pearlite steels. 

In precipitation-hardened or particle dispersion- 
strengthened metals and alloys, the strengthening 
phase generally does not creep and the creep deforma- 
tion is controlled by the recovery process by diffusion 
of atoms around strong particles [6]. In this study, 
a micromechanics model was proposed, in which the 
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| projection was employed as the constitutive equa- 
tion and the diffusional recovery causing the decrease 
in the internal stresses in the strong second-phase 
particles was also taken into account. Creep curves 
of the matrix (ferrite) phase without second-phase 
(cementite) particles were simulated by the O projec- 
tion. The simulated creep curves implicitly involve the 
microstructural effects, such as cavitation and back 
stresses, in the ferrite matrix. However, the internal 
stresses induced by the second phase generally depend 
not only on the material properties of the second 
phase and matrix but also on the current creep strain 
and creep strain rate of both phases, the applied stress, 
time and so on [4, 5], and can be affected by the 
diffusional recovery around the second-phase par- 
ticles [7], although the second-phase particles are 
assumed to be non-deforming in this study. Therefore, 
the effects of the matrix properties and those of the 
internal stresses relating to the second-phase particles 
on the creep deformation were separately treated in 
this study. The results of the analysis based on this 
model were then compared with the results of the 
creep-rupture tests on carbon steels containing 
spherical cementite particles. 

2. Stress and creep strain 
Let us consider the creep deformation of a material 
containing non-deforming second-phase particles of 
ellipsoidal shape ((x 1 + X~)/a 2 + x2/c  2 ~< 1 in (Xa, x2, 
x3) co-ordinate) and of volume fraction o f f  which are 
uniformly dispersed in the ductile matrix phase. It is 
assumed that both phases are elastically is| and 
the matrix is plastically is| It is also assumed 
that creep strains are uniform in the matrix phase, 
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namely, ~-;3 = - - 2 e ' 1 1  = - 2 8 : ~ 2  = 8' under an ap- 
plied tensile stress, 0-A3 (8' is the equivalent creep strain 
of the matrix). In the present case, the diffusional 
recovery around the second-phase particles should 
be taken into account [7]. The virtual misfit strains 
between second-phase particles and matrix are 
g * 3  = - -  2 8 ~ 1  = - -  2~2 = e* (a* is the equivalent 
misfit strain between second-phase particles and the 
matrix), and 8" is reduced to ~' when no recovery 
occurs. The components of internal stresses averaged 
over the matrix, O-[j, and those averaged over the 
second phase, ~I~, can be calculated by Eshelby's 
equivalent inclusion method [8-10] and Mori and 
Tanaka's average internal stress concept E111 and are 
expressed as [4] 

- f AF e 3 

- fAEa*  (la) 

= = 

= fBEa* (lb) 

0-% = ( 1 - f ) A E e *  (2a) 

= 0-% 

- (1 - f ) B E ~ *  (2b) 

where E is Young's modulus of the matrix (E = 2g 
(1 + v), g is the rigidity, and v the Poisson's ratio). 
A and B are functions of Eshelby's tensor [9, 10, 12, 
13], elastic moduli of the matrix phase (E, g and v) and 
those of the second phase (E*, g* and v*). The actual 
stress acting on each phase and the equivalent stress, 
0-~, are [41 

0-% + 0-~3 = 0-A3--fAE8* (3a) 

= fBE~* (3b) 
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for the matrix, and 
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for the second phase, where K( = A + B) is a shape 
factor. The value of shape factor K is ( 7 - 5 v ) /  
[10(1 -v2)1 for the spherical second phase of the 
same elastic moduli as those of the matrix [8]. The 
value of a* can be calculated by integrating the follow- 
ing equation with respect to time, t 

d s * / d t  = d s ' -  C 8 "  (5) 
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where C is a factor relating to diffusional recovery, 
and is given by 3F~tf~DS/(kTLV) [7]. F is a shape 
factor of second-phase particles and ( 7 - 5 v ) /  
[5(1 - v)] for the spherical second-phase particles of 
the same elastic moduli as those of the matrix, F~ is the 
atomic volume, D is a diffusion coefficient, S is the 
total cross-section of diffusion, L is the average diffu- 
sion distance of atoms, V is the volume of a second- 
phase particle, k is Boltzmann's constant and T is the 
absolute temperature. The average creep strain of the 
material, ai~, is expressed as 

~ij = ( 1 - f ) ~ ' q  (6) 

where the equivalent creep strain, e, of the material is 
equal to a33. The internal stress distribution may oc- 
cur in the second-phase particles owing to diffusional 
recovery [14, 151, but for simplicity the effects of the 
stress distribution were neglected in this study. 

3. Constitutive equation 
The creep deformation of a material containing strong 
second-phase particles at a current time, t, can be 
calculated on the basis of the micromechanics model, 
in which the internal stresses in both second phase and 
matrix caused by creep deformation of the matrix 
phase and the effects of diffusional recovery are taken 
into account. 

If the creep deformation of the matrix phase is 
expressed by the constitutive equation of the O projec- 
tion [21, the equivalent creep strain of the matrix, a', is 
given by the following equation 

8 '  = 0 1 [ 1  - -  exp( - 020] + 03[exp(04t) - 1] (7) 

loge0i = ai + biT + Ci0-Ie ~- di0-~er (8) 

where ai, bi, ci and di (i = 1-4) are materials constants. 
The equivalent creep rate of the matrix, d s'/dt, is given 
by [2] 

ds'/dt  = 0102exp( -020  + 0304exp(O4t) (9) 

If the creep experiments are carried out at a constant 
temperature, the values of Oi are given by 

loge 0i = ~i + [310-~e (10) 

where the materials constants, ~i and 131 (i = 1 4) 
should be obtained by the creep experiments. Putting 
Equation 10 into Equation 5 and integrating Equa- 
tion 5 with respect to time, t, from t = 0-t, one can 
find the internal stresses and creep strains by using the 
above equations. The numerical calculation of the 
creep deformation was carried out using the above 
equations by the Runge-Kutta method. The instan- 
taneous plastic strain and elastic strain were neglected 
in the present calculation. 

4. Experimental procedure 
Commercial carbon steels were used in the creep- 
rupture experiments in this study. Table I shows the 
chemical composition of the steels. The steel bars of 
20 mm diameter and 80 mm length were heat treated 
to develop spherical cementite precipitate particles 



and were then machined into creep-rupture test pieces 
of 5 mm diameter and 30 mm gauge length. Table II 
shows the heat treatments, the volume fraction, f, the 
average radius, a*, and the interparticle spacing of 
cementite particles and the grain diameter of the speci- 
mens in the carbon steels. The heat-treated specimen 
of the $20C steel has almost the same average particle 
radius as that of the $80C steel, while almost no 
precipitates were observed in the specimen of pure 
iron. The grain diameter was almost the same in these 
specimens. Fig. 1 shows a scanning electron micro- 
graph of the heat-treated specimen of the $80 steel. 
Spherical cementite particles are visible in the micro- 
graph. Creep-rupture experiments were carried out 
using single lever-type creep-rupture equipment at 
873 K in air. 

5. Results of theoretical calculation and 
experimental results 

5.1. Prediction of creep deformation 
The numerical calculation was made on the basis of 
the micromechanics model for carbon steels contain- 

T A B L E  I Chemical composition (wt %) of the steels used in this 
study 

Steeis C Si Mn P S Fe 

Pure iron 0.03 0.19 0.28 0.015 0.011 Bal. 
$20C 0.22 0.22 0.45 0.016 0.018 Bal. 
$80C 0.83 0.21 0.48 0.011 0.004 Bal. 

Figure 1 A scanning electron micrograph of the heat-treated speci- 
men of the $80C steel. 

ing cementite particles. The value of the rigidity, 
Ix = la*= 61600 MPa and that of Poisson's ratio, 
v = v* = 0.34 [16] were used in the numerical calcu- 
lation at 873 K, because it is known that the elastic 
constants of ferrite are almost the same as those of 
cementite phase at room temperature [17]. The pre- 
liminary calculation revealed that the value of C for 
volume diffusion of iron atoms (in Equation 5) was at 
least 3 x 104 times larger than that of C for grain- 
boundary diffusion of iron atoms [12], if the volume 
diffusion coefficient of iron, Dv = 4.13 x 10-19 m 2 s-1 
[18], and the grain-boundary diffusion coefficient of 
iron, DaB = 4.51 x 10-21m2s -1 at 873 K [19], the 
atomic volume of iron, U2= 7 .10x10 -6m3mol  - t ,  
and the grain-boundary thickness, 5_~ 2b = 
5 . t 0 x l 0 - t ~  (b is the magnitude of the Burgers 
vector) [7], and the average particle radius in Table II 
were used in the calculation. Therefore, it was as- 
sumed in this study that the recovery process around 
cementite particles was controlled by volume diffusion 
of iron atoms. These physical constants (except 
DaB and 5) were used in the present calculation. The 
following four 02 parameters of the | projection ob- 
tained for ferrite steels in the previous study [5] were 
also used in this study. 

- ~ ( l la)  log1001 1.344 + 7.889 x 1 0 - 3 e y e  

log1002 - 7.342 + 0.07186 cr1~ ( l lb)  

log1003 - 2.482 + 4.051 x 10-3crI~ (l lc)  

loglo194 - 7.287 + 0.06841erie ( l ld)  

Fig. 2 shows the calculated creep curves in the 
specimens of carbon steels containing spherical 
cementite particles under a stress of 49 MPa at 873 K. 
The creep curves of the carbon steels ( f  = 0 , f  = 0.0342 
and a* = 4.37 x 10-Tm) exhibit both transient creep 
and accelerated creep periods, whereas creep deforma- 
tion seems to cease after long transient creep in the 
specimen containing cementite particles ( f =  0.0342) 
when no diffusional recovery occurs. Fig. 3 shows the 
calculated and experimental creep curves in the speci- 
mens of carbon steels containing cementite particles 
tested under a stress of 49 MPa. The creep resistance 
of specimens increases with increasing volume fraction 
of cementite particles. There is a correlation between 
the calculated creep curves and the experimental ones 
in those steels, but the calculated values give smaller 
creep strains than the experimental ones near the 

T A B L E  II The volume fraction, the average particle radius and the averageinterparticle spacing of the cementite particles and the grain size 
in the heat-treated specimens of the steels 

Steels Heat treatments Cementite particle 

Volume Particle Interparticle 
fraction, f radius, spacing, 

a* (10-7 m) l (10-~m) 

Grain 

diameter 
(10-6m) 

Pure iron 
$20C 
$80C 

1323 K,7.2 ks ~ AC" ~ 973 K -* AC 0.0 
1423 K, 3.6 ks ---, AC + 973 K, 180 ks ~ AC 0.0342 
1373 K, 3.6 ks ~ AC + 973 K, 180 ks ~ AC 0.136 

- - 72 
4.37 2.18 72 
3.82 1.90 78 

AC = air cooled. 
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Figure 2 The calculated creep curves in the specimens of carbon 
steels containing spherical cementite particles under a stress of 
49 MPa  at 873 K ( f  = volume fraction of cementite particles). 
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Figure 4 The ( - - - )  calculated and ( ) experimental creep curves 
of the specimens of carbon steels containing cementite particles 
tested under a stress of 29.4 MPa  at 873 K. 
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Figure 3 The (- ) calculated and ( ) experimental creep curves 
in the specimens of carbon steels containing cementite particles 
tested under a stress of 49 MP a  at 873 K. 

rupture life. Fig. 4 shows the calculated and experi- 
mental creep curves in the specimens of carbon steels 
containing cementite particles tested under a stress of 
29.4 MPa. The calculated creep strain is a little larger 
than the experimental one in both specimens of 
f =  0.0342 and 0.136, but there is a correlation be- 
tween the shape of the calculated creep curves and 
that of the experimental ones, except around the frac- 
ture strain. 

Fig. 5 shows the relationship between the time to 
a given creep strain and the creep stress in the speci- 
mens o f f =  0.0342 of carbon steels during creep at 
873 K. The stress dependence of the time to a given 
creep strain calculated on the micromechanics model 
agrees with that experimentally obtained in the creep 
strain range from 0.01-0.30, although the theoretical 
calculation gives a little longer time to 0.01 strain 
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Figure 5 The relationship between the time to a given creep strain 
and the creep stress in the specimens containing cementite particles 
o f f =  0.0342 during creep at 873 K. e: (O) 0.01, (A) 0.03, (D) 0.10, (O) 
0.30, ( ) calculated. 
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Figure 6 The relationship between the time to a given creep strain 
and the creep stress in the specimens containing cementite particles 
o f f =  0.136 during creep at 873K. For  key, see Fig. 5. 

under the higher stresses. Fig. 6 shows the relationship 
between the time to a given creep strain and the creep 
stress in the specimens o f f =  0.136 of carbon steels 
during creep at 873 K. The stress dependence of the 
time to a given creep strain is a little larger in the 



specimens of f =  0.136 than in the specimens of 5oo 
f = 0.0342 in Fig. 5, and there is an agreement on the 
stress dependence of the time to a given creep strain 
between the calculated time and the experimental one, 
except for the smallest creep strain under the higher ~ 100 
stresses. The instantaneous plastic strain and elastic ~ 5o 
strain were neglected in the present calculation. This 
may be the reason why there is a difference in the time 
to a given creep strain between the calculated values 
and the experimental ones under the higher stresses in 
these specimens. 

5.2. Creep rate and equivalent stresses 
during creep 

Fig. 7 shows the change in the creep rate with time in 
the specimens off  = 0.0342 during creep at 873 K. The 
experimental creep rate decreases at first rapidly and 
then gradually with time, and increases after showing 
a minimum value. The time dependence of the cal- 
culated creep rate shows an inverse sigmoidal shape 
and agrees with the experimental results, except in the 
very early stage of creep deformation under the lower 
stress (29.4 MPa) and the accelerated creep regime 
under the higher stress (49 MPa). Fig. 8 shows the 
change in the creep rate with time in specimens with 
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Figure 7 The change in the creep rate with time in the specimens 
containing cementite particles o f f =  0.0342 during creep at 873 K. 
(�9 O) Experimental, ( ) calculated. 
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Figure 8 The change in the creep rate with time in the specimens 
containing cementite particles o f f =  0.136 during creep at 873 K. 
(�9 O) Experimental, ( - - )  calculated. 
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Figure 9 The change in the equivalent stress calculated for matrix, 
cy~, and for the cementite particles, cy~ ], in the specimens containing 
cementite particles during creep at 873 K. f.' ( --) 0.136, ( - - - )  
0.0342. 

f =  0.136 during creep at 873 K. There is a correlation 
between the stress dependence of the calculated creep 
rate and that of the experimental one under both 
stresses of 29.4 and 49 MPa, although the change in 
the creep rate with time is somewhat larger in the 
experimental results. 

Fig. 9 shows the change in the equivalent stress 
calculated for the matrixl ~e, and for the cementite 
particles, n ~e, in the specimens of carbon steels during 
creep at 873 K. The equivalent stress in each phase is 
a function of the average internal stress and the ex- 
ternal stress, ~A 3 (Equations 3 and 4). The time de- 
pendence of the equivalent stress shows a sigmoidal 
shape in the cementite particles and an inverse sig- 
moidal one in the matrix. The maximum value of the 
equivalent stress in the cementite particles is larger in 
the specimens of the smaller volume fraction of cemen- 
rite phase under the higher creep stresses. 

Thus, the creep deformation of carbon steels con- 
taining spherical cementite particles was simulated by 
the continuum mechanics model, in which the | pro- 
jection was incorporated as the constitutive equation 
and the effects of diffusional recovery was taken into 
account. However, it is necessary to take the creep 
damage into account in the constitutive equation (for 
example, in the form of a damage function) in order to 
reasonably predict the creep deformation near the 
creep fracture. 

6. Conclusion 
A micromechanics model, in which work-hardening 
caused by second-phase particles and diffusional 
recovery were taken into account, was proposed for 
explaining the creep deformation of dispersion- 
strengthened metals in high-temperature creep. A con- 
stitutive equation of the | projection was used to 
describe the whole creep curves from the onset of 
loading to rupture. The results of the calculation 
based on the present model were compared with those 
of the experiments on the carbon steels containing 
spherical cementite particles. There was a correlation 
between the experimental creep curves and the cal- 
culated ones. The changes in the calculated creep 
strain and creep rate with time were also compared 
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with the experimental results on the carbon steels. The 
micromechanics model in this study was found to be 
able to simulate the creep curves of the dispersion- 
hardened metals, except near the fracture strain. 
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